Extensions and Limitations of the Neural GPU
نویسندگان
چکیده
The Neural GPU is a recent model that can learn algorithms such as multi-digit binary addition and binary multiplication in a way that generalizes to inputs of arbitrary length. We show that there are two simple ways of improving the performance of the Neural GPU: by carefully designing a curriculum, and by increasing model size. The latter requires a memory efficient implementation, as a naive implementation of the Neural GPU is memory intensive. We find that these techniques increase the set of algorithmic problems that can be solved by the Neural GPU: we have been able to learn to perform all the arithmetic operations (and generalize to arbitrarily long numbers) when the arguments are given in the decimal representation (which, surprisingly, has not been possible before). We have also been able to train the Neural GPU to evaluate long arithmetic expressions with multiple operands that require respecting the precedence order of the operands, although these have succeeded only in their binary representation, and not with perfect accuracy. In addition, we gain insight into the Neural GPU by investigating its failure modes. We find that Neural GPUs that correctly generalize to arbitrarily long numbers still fail to compute the correct answer on highly-symmetric, atypical inputs: for example, a Neural GPU that achieves near-perfect generalization on decimal multiplication of up to 100-digit long numbers can fail on 000000 . . . 002× 000000 . . . 002 while succeeding at 2 × 2. These failure modes are reminiscent of adversarial examples.
منابع مشابه
Isolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کاملImproving GPU Simulations of Spiking Neural P Systems
In this work we present further extensions and improvements of a Spiking Neural P system (for short, SNP systems) simulator on graphics processing units (for short, GPUs). Using previous results on representing SNP system computations using linear algebra, we analyze and implement a computation simulation algorithm on the GPU. A two-level parallelism is introduced for the computation simulation...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملFast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.00736 شماره
صفحات -
تاریخ انتشار 2016